HAC High Altitude Observatory NCAR

Sunspot Contrast and Area Over Two Solar Cycles

Giuliana de Toma

Collaborators at SFO: G.Chapman, D. Preminger, A. Cookson

Thanks to : K. Tegnell, W. Denig, H. Coffey (NOAA), K. Balasubramaniam (AFRL)

2nd Sunspot Number Workshop Brussels, 21-25 May 2012

San Fernando Observatory (SFO)

research facility associated with the California State University at Northridge (CSUN)

Apr 20 2012

SFO Observations of Spots

Photometric Telescope Filters

*** ** **

Telescopes	Wavelength (nm)	Bandpass (nm)	
CFDT1	672.3	10	
(5" pixels)	472.3	10	
-	393.4	1	
CFDT2	672.3	10	
(2".5	472.3	10	
pixels)	393.4	1	
	393.4	0.3	
	780	10	
	997	10	

CFDT1 1986-present sunspots identified in contrast images 8.5% darker than quiet Sun $C_{spot} = \frac{I_{spot} - I_{quiet Sun}}{I_{quiet Sun}}$ long, objective, consistent datasets

OUTLINE

- brief discussion of cycle 23
- contrast of spots in cycle 22 and 23 (SFO)
- area of spots in cycle 22 and 23 (SFO and USAF)

very quiet Sun in 2008-2009, longer than average cycle only small spots at the start of cycle 24 North more active than the South

WHERE DID ALL THE SUNSPOTS GO?

total # spotless days in 2008-2009 > 500 spots were present on the Sun less than 30% of the time

Aug 2008 and Aug 2009 longest periods with no spots

MUCH ADO ABOUT NOTHING..

Aut. 90, No. 30, 29 July 208

During This Solar Minimum

Mar 2009

Aug 2009

Jul 2009

The Next Cycle

Mar 2009 The New York Times

Sunspots Are Fewest Since 1954,

but Significance Is UnclearAre Sunspots Disappearing? Oct 2 2008 Sep 2009

Is the Sun Missing Its Spots?

Jul 21 2009

Solar Cycle 24 is Late

Longer term Solar Minimum

Deep Minimum Continues

Sun goes longer than normal without producing sunspots (MSU)

Jun 2008

Quieter activity on Sun may push **Britain into a** modern-day Little Ice Age

Scientists Link Quiet Sun & Cold Winters Sun blamed for Europe's colder winters

Physics World Apr 2010

2011/09/24 00:00

WHAT ABOUT CYCLE 25?

Jac. Vol. 90, No. 30, 29 July 2001

BLACK NAMED IN 23.413 203 Notes 267-268

Are Sunspots Different During This Solar Minimum?

(Livingston & Penn 2009)

linear trend

if trend continues

decrease in spot magnetic field

field falls below 1500Gauss

increase in brightness ~2% a year

no more spots/pores after 2015!!!

Zeeman splitting in the Fel 1564.8nm direct measure of mag. field strength

~900 sunspots from 1998 to 2005 relatively small # of points

3200 **Declining Sunspot** Magnetic Fields 3000 2800 2600 (gauss) 2400 2200 2000 Credit: W. Livingston and M. Penn Eos, Vol. 90, No. 30, 28 July 2009 1800 1995 2000 2005 2010 2015 Year

ARE SUNSPOTS GETTING LESS DARK?

Penn & Livingston ApJ 2006

OR IS THIS A SOLAR CYCLE EFFECT?

sunspots are smaller, i.e. less dark, i.e. have weaker fields near solar minimum when activity is low

.....Several studies indicate they are not

either did not find a change or found a solar cycle signature

Norton and Gilman, ApJ 2004

Penn & MacDonald, ApJ 2007

Mathew et al., A&A 2007

Wesolowsi, Walton & Chapman, Sol Phys 2008

Watson & Fletcher, IAU Symp., 2010

Watson, Fletcher, & Marshall A&A 2011

Shad & Penn, Sol Phys 2010

Pevtsov et al., ApJ 2011

A New Maunder Minimum?

Cycle 25 peaks at ssn 7 !!!

Spot Contrast vs. Spot Area

Larger Spots are Darker than Smaller Spots no significant differences between the two cycles

Sunspot Contrast as a Function of Time

all SFO spots ca. 31000

spots within 60° from disk center 27-day average 5 spots minimum ca. 27000

Contrast in darkest pixel of each spot No clear trend in spot contrast No significant change in the mean spot contrast in cycle 23

Sunspot Contrast as a Function of Time

spots within 40° from disk center ca. 18500

27-day average 5 spots minimum

Average contrast of each spots second-order fit gives a small increase in contrast of about 6% over 22 years, only about 2% over cycle 23 No significant change in the mean spot contrast in cycle 23

SFO results disagree with Livingston & Penn

 They reported a change of almost 2% a year in spot brightness for the period 1998-2006. We find less than 2% change over the entire cycle 23

'Because of the nature of these observing program, the earlier measurements of this plot are probably skewed toward highest magnetic field values (larger spots), nonetheless the linear trend is clear even excluding all pre-1995 data.' (Livingston & Penn 2009)

 small-number statistics in Livingston & Penn dataset (~3000 data points vs. more than 30000 in SFO dataset) possible selection effects, i.e. if more small spots were included in recent times, this can explain the trend

SUNSPOT AREA IN CYCLE 23

Kilcik et al. (2011) claimed a *decrease in the number of small spots* from analysis of spot class and an *increase in large spots*

They called "small" spots: spots in classes A, B, C, H "large" spots: spots in classes D, E, F, G but morphological class # size Lefevre & Clette (2011) decrease in small spots only in classes A, B not C, global deficit of small spots

when spots are analyzed based on their size: the major difference between cycles 22 and 23 is in the frequency of very large spots

Lack of Large Spots Evident in the TSI record

Are Small Spots Decreasing ???

Spots distribution as function of spot size for cycle 22 and 23

the major difference between the two cycles is in the number of large and very large spots in the tail of the distribution very large spots decreased by about 40% in cycle 23

Sunspot Frequency

 decrease of ~25% in the number of the very small spots with area < 30 μhem in 2000-2002 in agreement Lefevre & Clette (2011)

 no large differences between the two cycle maxima for the number of small spots and medium spots

 large difference in the large and especially the very large spots both in the frequency and timing of appearance

number of spots with area > 700
μhem less than half the number
during cycle 22 maximum

Variation in Sunspot Area

decrease in total sunspot area cycle 23 maximum

• the decrease in the large and very large spots accounts for over 60% of the decrease in total sunspot area during the maximum of cycle 23, the very large spots alone for 46%

 medium spots accounts for about 25%

 decrease in small spots does not contribute much to change in total sunspot area, less than 4%, i.e. is an order of magnitude smaller than the effect of the very large spots

NOAA/USAF Spot groups

The USAF/SOON network consists of identical telescopes located within USAF bases has provided areas for sunspot groups since 1976

The number of stations decreased during the years. Data are currently taken at 3 locations: Holloman (USA), San Vito (Italy), and Learmonth (Australia)

Spot group hemispheric areas are derived from sunspot drawings made by rotating military personnel, using a visual fit to template ellipses of fixed size and correction for projection is based on a set grid whose steps are in increments of 10%. Errors in hemispheric areas are typically 10% or larger

Advantage of no data gaps

Example of USAF sunspot drawing

	-30 -25 -20 -15 -15 -10 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15	>>>> PRE. FIGRE ARE DATE: IME: FIGRE ARE 20 APR 12 IME: FIGRE ARE IME: FIGRE ARE NO APR 12 IME: FIGRE ARE IME: FIGRE ARE NO GROUP OLD FIGRE ARE INDE: TO -24.75 IO IF 43 NO GROUP OLD FIGRE ARE TO 5 7.2265 204/26 3:1910 434406 THE ARE Y 63 KHAW 262.210.5 SPOTS 7.2265 204/26 3:1910 434406 TITI1 22.025 9/400 TITI1 22.025 9/400 TITI1 22.05 6 10/1 9 /4/59 TITI1 22 084 35718 05.021 M 2006 TITI1 22 TI 2004 6 32712 9 /467 TITI1 22 TI 2004 6 32712 9 /467 TITI1 22
--	--	---

AFWA Form 21, May 00

area measurements are given in steps of 10µhem: 0,10, 20,

overlay to correct for projection

USAF/NOAA 18			СМ		SUNSPOT AREA OVERLAY		
	10	0	0	0	0	0	400 () () () ()
	20	0	0	0	0	0	
	40	0	0	0	0	0	500 () () () () ()
	60	0	0	0	0	0	600
	80	0	0	0	0	0	
	100	0	0	0	0	0	700
	150	0	0	0	0	0	800
	200	\bigcirc	\bigcirc	0	0	$\left(\right)$	
	300	\bigcirc	\bigcirc	0	0	Û	

overlay for area estimate

NOAA/USAF Spot groups

The USAF/SOON network consists of identical telescopes located within USAF bases has provided areas for sunspot groups since 1976

The number of stations decreased during the years. Data are currently taken at 3 locations: Holloman (USA), San Vito (Italy), and Learmonth (Australia)

Spot group hemispheric areas are derived from sunspot drawings made by rotating military personnel, using a visual fit to template ellipses of fixed size and correction for projection is based on a set grid whose steps are in increments of 10%. Errors in hemispheric areas are typically 10% or larger

Advantage of no data gaps

NOAA/USAF dataset

weighted average from all available USAF stations

USAF spot group area are smaller than SFO group area by about 35% for small groups

 decrease in very small spots of about 50%during cycle 23 maximum, larger than in SFO data

 decrease in the large and very large spots

Contribution to total sunspot area variation

AREA	Cycle 22 max 1989-1991	Cycle 23 max 2000-2002	Difference Cycle 22 – 23
all	1850230	1343538	506692
very small	59340	34708	24632
small	142770	146790	-4020
medium	871360	739880	131480
large & very large	776760	422160	354600

Iarge and very large spots accounts for 70% of the deficit in total sunspot area during the maximum of cycle 23

- medium spots contribute about 26%
- very small spots for less than 5%

How reliable are measures of small spots in the USAF dataset?

• different number of observatories:

decrease in simple spots group also seen in Holloman & San Vito Boulder stops in 1994 Paleuha stops in 1997 Ramey stops in 2003

Learmonth does not show a clear decrease in small spots Holloman and San Vito do

• difference among observatories

 very small spots more subject to seeing conditions and reports of small spots/pores can vary from observer to observer

SFO dataset more consistent for small spots than the NOAA/USAF

SUNSPOT AREA IN CYCLE 23

 remarkable decrease in the number of large and very large spots in cycle 23

 decrease in these larger spots accounts for more than 60% of the decreased observed at solar maximum in total spot area

 difference in the number of small spots in cycle 23 is unclear (conflicting results from different observatories)

 decrease in small spots during maximum of cycle 23 but not important for total sunspot area or total solar irradiance

EXTRA SLIDES

morphological class appears to be more subjective than area

S31W56 A	8192	H	S	1	1	20	980329.7 980329.6 064 3LEAR
S33W59 B	8192	B	XO	3	5	20	980329.7 980329.6 058 3SVTO
S32W66 A	8192	2 A	Х	1		10	980329.6 980329.6 066 3HOLL
S26W22 B	8167	C	SO	5	8	20	980226.3 980226.3 /// 4LEAR
S25W27 B	8167	D	RO	3	9	20	980226.2 980226.3 034 3SVTO
S26W27 B	8167	B	XO	3	3	10	980226.5 980226.3 042 3HOLL
S11W01 B	10010) D	RO	5	4	30	020622.9 020622.9 273 3LEAR
S11W06 A	10010	H	RX	2		C	020622.8 020622.9 246 3SVTO
S11W10 B	10010) B	ХΟ	9	4	30	020622.8 020622.9 284 3RAMY
S12W08 B	10010) C	SO	4	4	30	020622.9 020622.9 287 2HOLL
S06E33 B	10485	B	XO	2	1	10	031025.6 031025.3 862 3LEAR
S08E27 B	10485	С	RO	2	2	10	031025.6 031025.3 235 2SVTO
S08E26 A	10485	H	SX	2	2	10	031025.6 031025.3 323 3HOLL
S14E41 B	10907	B	XO	2	9	10	0609 9.3 0609 9.3 081 3LEAR
S13E38 A	10907	H	RX	1	1	10	0609 9.1 0609 9.3 058 3SVTO
S13E35 B	10907	C	SI 1	0	7	40	0609 9.4 0609 9.3 082 4HOLL

11980403 0055 S31W56 A 11980403 0650 S33W59 B 11980403 1716 S32W66 A

11980228 0019 S26W22 B 11980228 0720 S25W27 B 11980228 1453 S26W27 B

11020623 0010 S11W01 B 11020623 0550 S11W06 A 11020623 1240 S11W10 B 11020623 1327 S12W08 B

11031023 0245 S06E33 B 11031023 1332 S08E27 B 11031023 1500 S08E26 A

11060906 0427 S14E41 B 11060906 0620 S13E38 A 11060906 1730 S13E35 B

NOAA/USAF dataset

decrease in total sunspot area of about 35%

• the decrease in the large and very large spots accounts for about 70% of the decrease in total sunspot area during the maximum of cycle 23

- medium spots accounts for about 26%
- decrease in very small spots contributes less than 5% to the change in total sunspot area

Sunspot Deficit

The changes in TSI are dominated by the very large spots, because of their size/contrast

The second larger contributor are medium spots because of their number/size

Deficit contributed by small, nedium and large spots

Recent TSI record - Cycle 24

Only 7 spot groups larger than 700 μ hem in cycle 24

r = 0.997

WAS CYCLE 23 UNUSUAL?

Minimum before the Maunder Minimum had several cases of large spots

Hevelius drawings in 1644

cases of large spots

very different from the recent minimum

North reached minimum conditions already in 2006

Polar Magnetic Fields

weak polar magnetic fields ca. 40% lower than in 1996

consistent with the observed decrease in open flux in the heliosphere non-dipolar solar corona in 2007-2008

What caused a decrease in the polar fields? meridional flow (Schrijver & Liu 2008, Wang et. al 2009, Nandy et al. 2011) α-effect (Dikpati 2011) tilt of active regions (Petrie 2012)

Torsional oscillation at a depth of 7 Mm

Does irt mean that Cycle 25 will not start until at least 2023?

M. Rempel (2012)suggested that the non-appearance of the high-latitude branch may be due to a change in the differential rotation profile that arises from a reduction of the α effect

Strong cycles have more rigid differential rotation (magnetic tension tends to reduce rotation shear)

Weak cycles rotate more differentially, i.e. poles slow down

atitude

If a mean differential rotation is subtracted this would hide polarward branch

MDI with 5-year rotational mean subtracted **polarward branch reappears!**

The slowing 'rush to the poles'

cycle 24 started "late", but cycle 23 was 12 years long, 2 years longer than the previous two cycles. Iron emission seems to appear right as expected, 12 years after the last one Cycle 21 Cycle 22 Cycle 23

no physical reason to connect highand low-latitude branch correspond to different coronal structures temperature effect Robbrecht et al. 2010

